LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on thermal effects of InSb infrared focal plane arrays irradiated by pulsed laser

Photo by fabiooulucas from unsplash

To learn thermal effects of InSb infrared focal plane arrays (IRFPAs) detector irradiated by pulsed laser, basing on ANSYS software, and considering temperature dependent thermal parameters of InSb, a three… Click to show full abstract

To learn thermal effects of InSb infrared focal plane arrays (IRFPAs) detector irradiated by pulsed laser, basing on ANSYS software, and considering temperature dependent thermal parameters of InSb, a three dimensional temperature field analysis model of InSb IRFPAs detector by 1064 nm Gauss laser irradiation is built. The characteristics of temperature rise and temperature distribution in InSb IRFPAs detector are studied. The results show that the maximum temperature always occurs in InSb chip, locating at the top layer of InSb IRFPAs detector, the temperature rises in each layer are different, and the temperature distribution in InSb IRFPAs detector is quite different from that in single-layer material. The temperature distribution of InSb chip in InSb IRFPAs reduces from center to outside, while it shows not a smooth decrease, but a concentric-ringed ripple decrease with non-consecutive high temperature extremum regions. The temperature distribution patterns in underfill, Si readout integrated circuits are similar to that in InSb chip, but the discontinuous high temperature areas in InSb chip, underfill locate at the regions between indium bumps, and the discontinuous high temperature areas in Si readout integrated circuits locate at the contact area with indium bumps. This different temperature distribution phenomenon in each material is mainly due to its multi-layer architecture and quite different thermal properties of the middle layer, which is an interlacing layout of underfill and indium bumps. Besides, the influences of indium bump structure size on the temperature rise are also discussed. All these results qualitatively reflect the disciplines of temperature rise in InSb IRFPAs detector, providing a theory support for thermal analysis of detectors irradiated by laser.

Keywords: insb; irfpas detector; temperature; insb irfpas

Journal Title: Optical and Quantum Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.