Optical gates based on switchable material have become a focus of investigation. The present study designs an optical gate that uses DNA transmission lines and developed for Feynman and Toffoli… Click to show full abstract
Optical gates based on switchable material have become a focus of investigation. The present study designs an optical gate that uses DNA transmission lines and developed for Feynman and Toffoli reversible gates. It is shown that the implementation of a transmission line such as Ag/DNA/Ag produces a structure with high-quality switching. The switching characteristics of DNA were considered when designing the basic transmission line. The “On” mode is assumed for DNA with low conductivity. As conductivity increases, the line switches to the “Off” mode. A conceptual design is proposed in the present study for Feynman and Toffoli reversible gates for an optical regime at 300 THz based on DNA switching. A conceptual model is developed with an Ag/DNA/Ag transmission line controlled by changing the DNA bias. This transmission line provides a “Yes” gate, which is necessary for a reversible gate. The full wave time domain method was used to model the optical gates. The current work discusses how a DNA memristor can be used to design a compact reversible gate having a simple structure and high switching quality for use in optical systems.
               
Click one of the above tabs to view related content.