LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical Toffoli and Feynman reversible gates designing using DNA transmission lines

Photo from wikipedia

Optical gates based on switchable material have become a focus of investigation. The present study designs an optical gate that uses DNA transmission lines and developed for Feynman and Toffoli… Click to show full abstract

Optical gates based on switchable material have become a focus of investigation. The present study designs an optical gate that uses DNA transmission lines and developed for Feynman and Toffoli reversible gates. It is shown that the implementation of a transmission line such as Ag/DNA/Ag produces a structure with high-quality switching. The switching characteristics of DNA were considered when designing the basic transmission line. The “On” mode is assumed for DNA with low conductivity. As conductivity increases, the line switches to the “Off” mode. A conceptual design is proposed in the present study for Feynman and Toffoli reversible gates for an optical regime at 300 THz based on DNA switching. A conceptual model is developed with an Ag/DNA/Ag transmission line controlled by changing the DNA bias. This transmission line provides a “Yes” gate, which is necessary for a reversible gate. The full wave time domain method was used to model the optical gates. The current work discusses how a DNA memristor can be used to design a compact reversible gate having a simple structure and high switching quality for use in optical systems.

Keywords: transmission; transmission line; transmission lines; reversible gates; dna transmission

Journal Title: Optical and Quantum Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.