The influence of light absorption and temperature on self-focusing of zeroth-order Bessel–Gauss beams through plasma, with relativistic–ponderomotive regime, is investigated in this paper. The nonlinear differential equation for beam-width is… Click to show full abstract
The influence of light absorption and temperature on self-focusing of zeroth-order Bessel–Gauss beams through plasma, with relativistic–ponderomotive regime, is investigated in this paper. The nonlinear differential equation for beam-width is established by using parabolic equation approach under Wentzel–Kramers–Brillouin (WKB) paraxial approximation and solved numerically. The numerical results show the effects of beam parameter, relative density plasma, intensity parameter, absorption coefficient and plasma electron temperature on self-focusing of zeroth-order Bessel–Gauss beams in plasma. The self-focusing of Gaussian beams in the considered plasma is also deduced as a particular case in the present work.
               
Click one of the above tabs to view related content.