LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures

Photo by galen_crout from unsplash

A broadband metamaterial absorber with high absorption simultaneously in mid-wave infrared (MWIR) and long-wave infrared (LWIR) was proposed. In the MWIR, the absorption higher than 0.8 is from 4 to… Click to show full abstract

A broadband metamaterial absorber with high absorption simultaneously in mid-wave infrared (MWIR) and long-wave infrared (LWIR) was proposed. In the MWIR, the absorption higher than 0.8 is from 4 to 6.3 µm, while the absorption in the LWIR is from 8.7 and 9.6 µm. The absorber is insensitive to the incident angle. The broadband absorption in the MWIR is due to the slow-light effect of the trapezoid multilayered grating structure. And the broadband absorption in the LWIR is due to the phonon polariton resonant of trapezoid SiO2 layer. In the broadband high absorption region, the atmosphere is transparent, which may greatly promote the practical application of the absorber in double-color IR imaging, detecting, infrared stealth and thermal emitting.

Keywords: absorption; absorber; multilayered grating; trapezoid; broadband lwir; trapezoid multilayered

Journal Title: Optical and Quantum Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.