LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical characterization of nanostructured Ge1 − xSnxSe2.5 (x = 0, 0.3, 0.5) films

Photo from archive.org

The paper reports the optical properties of thin films of nanostructured Ge1 − xSnxSe2.5 (x = 0, 0.3, 0.5) glassy alloys. The glassy alloys of Ge1 − xSnxSe2.5 (x = 0, 0.3, 0.5) were prepared using melt quenching… Click to show full abstract

The paper reports the optical properties of thin films of nanostructured Ge1 − xSnxSe2.5 (x = 0, 0.3, 0.5) glassy alloys. The glassy alloys of Ge1 − xSnxSe2.5 (x = 0, 0.3, 0.5) were prepared using melt quenching method. Thin films of nanostructured Ge1 − xSnxSe2.5 (x = 0, 0.3, 0.5) glassy alloys were prepared using physical vapor deposition method. The films were characterized using XRD, EDX and TEM, which confirmed the amorphous nature, composition and formation of nanorods in the samples. Absorption and transmission spectra of thin films were recorded in the spectral range 400–2500 nm to obtain energy band gap, refractive index, extinction coefficient, dielectric constant etc. Results show that refractive index increases while band gap decreases on increase of Sn content in the Ge–Se system. This is due to the increase in density of defect states within band gap. The values of Urbach energy support the obtained results.

Keywords: thin films; band gap; ge1 xsnxse2; nanostructured ge1; glassy alloys

Journal Title: Optical and Quantum Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.