LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The simulation on absorption properties of metamaterial/GaAs/electrode layer hybrid structure based Terahertz photoconductive detector

Photo by mybbor from unsplash

Terahertz (THz) photodetectors have attracted great attention from scientists worldwide for their application in security checking, biomedical treatment and astronomical observation of remote stars and distant galaxies. As a typical… Click to show full abstract

Terahertz (THz) photodetectors have attracted great attention from scientists worldwide for their application in security checking, biomedical treatment and astronomical observation of remote stars and distant galaxies. As a typical THz detector, extrinsic GaAs based photoconductive detector is facing critical technical bottlenecks in the epitaxial growth of sufficiently thick and high-quality GaAs absorption layer. In this work, a novel THz photoconductive detector based on metamaterial/GaAs/electrode layer hybrid structure was designed and simulated. By setting the periodic split ring resonator (SRR) structure as 88 μm pitch with 8 μm width, the absorption peaks exist at the wavelength of about 142 and 367 μm, which originate from the resonant cavity and the SRR dipole resonance effect, and the novel device shows a significant enhancement compared with the conventional GaAs photoconductive detector. Thus, the necessary thickness of GaAs absorption-layer is largely reduced, and the resonant absorption peak can be modulated by changing the thickness of absorption layer. This work provides a novel device structure which can solve the critical epitaxial growth bottleneck of GaAs photoconductive detector and used for the astronomical observation, security check, etc.

Keywords: detector; structure; layer; gaas; absorption; photoconductive detector

Journal Title: Optical and Quantum Electronics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.