LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators

Photo by ericmuhr from unsplash

In this paper, compact all-optical XOR and XNOR gates based on different configurations of metal–insulator–metal plasmonic ring resonators (PRRs) have been proposed. Square and octagon-shaped rings have been used in… Click to show full abstract

In this paper, compact all-optical XOR and XNOR gates based on different configurations of metal–insulator–metal plasmonic ring resonators (PRRs) have been proposed. Square and octagon-shaped rings have been used in this case. The logic gates have been simulated using the two-dimensional finite-difference time-domain numerical method, with a  conventional perfectly matched layer as the absorbing boundary condition of the area under simulation. The phenomenon of Fano resonance is employed by the proposed gates to excite ON/OFF states. As a result, a large value of contrast ratio (C.R.) is obtained. The results show that the values of C.R. of XNOR and XOR gates for square-shaped PRR are 22.66 and 22.9 dB, respectively and the values of C.R. of XNOR and XOR gates for octagon-shaped PRR are 23.01 and 23.52 dB, respectively. Also, it is shown that the octagon-shaped gates have higher transmission ratios than other proposed configurations. The proposed optical logic gates can be used as key components in optical communications and for designing compact plasmonic devices.

Keywords: xor; optical xor; logic gates; xor xnor; gates based; plasmonic ring

Journal Title: Optical and Quantum Electronics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.