In this work, the long-range surface plasmon resonance (LRSPR) sensor based on dielectric Ti3C2Tx-graphene layers is demonstrated. Here, MXene (Ti3C2Tx) is used as a metal for strong surface plasmon’s generation… Click to show full abstract
In this work, the long-range surface plasmon resonance (LRSPR) sensor based on dielectric Ti3C2Tx-graphene layers is demonstrated. Here, MXene (Ti3C2Tx) is used as a metal for strong surface plasmon’s generation at 1550 nm excitation wavelength. Graphene is used to attach the biomolecules having carbon–carbon structure with pi stacking interactions. The detection accuracy (DA) and figure of merit (FoM) for the proposed LRSPR sensor is theoretically investigated at telecommunication wavelength. The highest FoM of (559.64 RIU−1) is obtained at 3100 nm dielectric thickness and 14 nm Ti3C2Tx thickness of the proposed sensor. The maximum improvement in FoM is 273% to the traditional LRSPR sensors. Propagation depths are also evaluated for Au-graphene and proposed LRSPR sensor at 14 and 27 nm thicknesses of Ti3C2Tx We believe that the Ti3C2Tx can be used in place of metals for strong plasmon generation in future sensor designs at telecommunication wavelengths.
               
Click one of the above tabs to view related content.