LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Construction of a dual-core hollow waveguide for visible and mid-infrared light transmission based on PTFE tubing and UV gel

Photo from wikipedia

This work proposes a facile approach to fabricate a dual-core hollow waveguide based on two common and low-cost raw materials, namely polytetrafluoroethylene (PTFE) tube and ultraviolet (UV) gel. A silica… Click to show full abstract

This work proposes a facile approach to fabricate a dual-core hollow waveguide based on two common and low-cost raw materials, namely polytetrafluoroethylene (PTFE) tube and ultraviolet (UV) gel. A silica glass tube is nested inside a heat-shrinkable PTFE tube. After heat treatment at 350 °C, the PTFE tube shrinks and then transforms into the low-index polymer on the outside of the silica tube. The PTFE-coated silica glass tubing is filled with UV gel followed by inserting a typical Ag/AgI mid-infrared (IR) hollow optical fiber. The UV gel is cured by UV radiation, forming a solid low-index layer between the PTFE-coated silica glass tubing and the Ag/AgI hollow optical fiber. A visible laser beam can be transmitted at a loss of 0.4 dB/m through the silica annulus between the low-index PTFE and UV gel layer. A 10.6-μm-wavelength CO2 laser beam is delivered through the Ag/AgI hollow optical fiber (core size 530 μm) and the transmission loss goes up from 1.63 to 3.22 dB/m as the bending angle increases from 0° to 90°.

Keywords: core; tube; gel; core hollow; ptfe; dual core

Journal Title: Optical and Quantum Electronics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.