LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Effect of Temperature on the Formation of Oxide Scales Regarding Commercial Superheater Steels

Photo from wikipedia

This study addresses the surface changes of three commercial steels (a low alloy ferritic 10CrMo9-10 steel, a Nb-stabilized austenitic AISI347 steel, and a high alloy austenitic Sanicro 28 steel) by… Click to show full abstract

This study addresses the surface changes of three commercial steels (a low alloy ferritic 10CrMo9-10 steel, a Nb-stabilized austenitic AISI347 steel, and a high alloy austenitic Sanicro 28 steel) by comparing the oxide scale thicknesses, chemical compositions, and surface morphologies of samples after pre-oxidation at 200, 500 and 700 °C with different exposure times (5 and 24 h) under humid or dry conditions. With all three steels, the oxide scale thickness increased as functions of temperature and exposure time, the effect of temperature being more prominent than the effect of exposure time. The presence of water resulted in thicker oxide scales at the studied low alloy ferritic steel, whereas in the two austenitic steels, the presence of water increased chromium diffusion to the oxide scale rather than the scale thickness. The oxide layers characterized and analyzed in this paper will be further studied in terms of their abilities to resist corrosion by exposing them under corrosive conditions. The results regarding the corrosion resistance of the steels will be published in a sequel paper.

Keywords: oxide scales; temperature; effect temperature; effect; oxide scale; steel

Journal Title: Oxidation of Metals
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.