LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Thermal Pretreatment and Acid Leaching on the Removal of Boron from Metallurgical Grade Silicon

Photo from wikipedia

The present work aims at investigating the impact of thermal pretreatment and acid leaching (HCl–HF) on the boron removal efficiency of metallurgical grade silicon (MG-Si). The impact of various parameters,… Click to show full abstract

The present work aims at investigating the impact of thermal pretreatment and acid leaching (HCl–HF) on the boron removal efficiency of metallurgical grade silicon (MG-Si). The impact of various parameters, involving oxidation temperature (700–1200 °C), oxidation time (1–5 h) and acid leaching (4 mol L−1 HCl–3 mol L−1 HF), on the removal of boron from MG-Si was thoroughly explored. It was found that thermal oxidation resulted in an enhanced removal efficiency of boron from MG-Si. By employing MG-Si particles in the range of 75–106 μm in conjunction with acid leaching at 65 °C for 6 h, the boron content was decreased from 19.60 to 14.10 ppmw, offering a removal efficiency of ca. 28%. When the MG-Si powder was subjected to thermal oxidation at 1100 °C for 5 h before leaching, the boron concentration in the purified Si was reduced from 19.60 to 8.90 ppmw, giving an extraction efficiency of 54.59%. An extended characterization study, regarding the microstructure, morphology and chemical composition of both un-treated and treated samples, was conducted to gain insight into the underlying mechanism of boron removal under different conditions.

Keywords: pretreatment acid; thermal pretreatment; oxidation; acid leaching; boron

Journal Title: Oxidation of Metals
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.