LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and Application of Different Non-thermal Plasma Reactors for the Removal of Perfluorosurfactants in Water: A Comparative Study

Photo from wikipedia

The degradation of perfluorosurfactants (PFS), particularly of PFOS, has been studied in dielectric barrier discharge (DBD) and nano-pulse corona discharge (PCD) reactors. DBD-plasma is generated in two different types of… Click to show full abstract

The degradation of perfluorosurfactants (PFS), particularly of PFOS, has been studied in dielectric barrier discharge (DBD) and nano-pulse corona discharge (PCD) reactors. DBD-plasma is generated in two different types of reactors. First, in a suitable falling film reactor with a planar configuration for the treatment of ca. 0.4 L PFS solution, and second, in a horizontal trough reactor for the treatment of ca. 8 L PFS contaminated water. For the comparison, the efficiency of PFS degradation by ozonation and photocatalytic ozonation processes were also examined using a similar falling film reactor, and it was found that these methods are not as efficient as the DBD plasma. The degradation of PFSs by non-thermal plasma was investigated in dependence on PFS concentration and gas atmosphere by HPLC/MS and ion chromatography. Concerning the energy yield, the nano-pulse corona is significantly more efficient than the DBD plasma. For an initial PFOS concentration of 10 mg/L the G50 of the PCD is about 200 mg/kWh, while it is less than 100 mg/kWh for the DBD reactor. Compared to the plasma in He atmosphere, in all reactors the decomposition of PFS under Ar atmosphere results in a deeper mineralization, which is expressed by fluoride recovery.

Keywords: thermal plasma; plasma; water; non thermal; reactor

Journal Title: Plasma Chemistry and Plasma Processing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.