LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Advancement of a Positive-Pressure Dry Powder Inhaler for Children: Use of a Vertical Aerosolization Chamber and Three-Dimensional Rod Array Interface.

Photo from wikipedia

PURPOSE Available dry powder inhalers (DPIs) have very poor lung delivery efficiencies in children. The objective of this study was to advance and experimentally test a positive-pressure air-jet DPI for… Click to show full abstract

PURPOSE Available dry powder inhalers (DPIs) have very poor lung delivery efficiencies in children. The objective of this study was to advance and experimentally test a positive-pressure air-jet DPI for children based on the use of a vertical aerosolization chamber and new patient interfaces that contain a three-dimensional (3D) rod array structure. METHODS Aerosolization performance of different air-jet DPI designs was first evaluated based on a 10 mg powder fill mass of a spray-dried excipient enhanced growth (EEG) formulation. Devices were actuated with positive pressure using flow rate (10-20 L/min) and inhaled volume (750 ml) conditions consistent with a 5-year-old child. Devices with best performance were connected to different mouthpiece designs to determine the effect on aerosolization and tested for aerosol penetration through a realistic pediatric in vitro mouth-throat model. RESULTS Use of the new vertical aerosolization chamber resulted in high quality aerosol formation. Inclusion of a 3D rod array structure in the mouthpiece further reduced aerosol size by approximately 20% compared to conditions without a rod array, and effectively dissipated the turbulent jet leaving the device. Best case device and mouthpiece combinations produced < 2% mouth-throat depositional loss and > 70% lung delivery efficiency based on loaded dose. CONCLUSIONS In conclusion, use of a 3D rod array in the MP of a positive-pressure air-jet DPI was found to reduce aerosol size by 20%, not significantly increase MP depositional loss, reduce mouth-throat deposition by 6.4-fold and enable lung delivery efficiency as high as 73.4% of loaded dose based on pediatric test conditions.

Keywords: aerosolization; rod array; array; positive pressure

Journal Title: Pharmaceutical research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.