LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Breakage of High Aspect Ratio Crystals in Filter Beds under Continuous Percolation

Photo from wikipedia

Purpose This work details experimental observations on the effect of liquid flow percolating through packed beds of crystals to elucidate how the filtration pressure severely alters the size distribution and… Click to show full abstract

Purpose This work details experimental observations on the effect of liquid flow percolating through packed beds of crystals to elucidate how the filtration pressure severely alters the size distribution and crystal shape. Pressure filtration is widely used in the pharmaceutical industry, and frequently results in undesired size distribution changes that hinder further processing. Methods The percolation methodology presented fixes fluid flow through a bed of crystals, resulting in a pressure over the bed. X-ray computed tomography (XCT) provided detailed observations of the bed structure. Detailed 2D particle size data was obtained using automated microscopy and was analysed using an in-house developed tool. Results Crystal breakage is observed when the applied pressure exceeds a critical pressure: 0.5–1 bar for ibuprofen, 1–2 bar for β-L glutamic acid (LGA) and 2–2.5 bar for para amino benzoic acid (PABA). X-ray computed tomography showed significant changes in bed density under the applied pressure. Size analysis and microscope observations showed two modes of breakage: (i) snapping of long crystals and (ii) shattering of crystals. Conclusion LGA and PABA have a similar breakage strength (50 MPa), ibuprofen is significantly weaker (9 MPa). Available breakage strength data may be correlated to the volumetric Gibbs free energy. Data from 12 and 35 mm bed diameters compares well to literature data in a 80 mm filter; the smaller, easy to operate percolation unit is a versatile tool to assess crystal breakage in filtration operations. Electronic supplementary material The online version of this article (10.1007/s11095-020-02958-x) contains supplementary material, which is available to authorized users.

Keywords: percolation; breakage; size; high aspect; breakage high; pressure

Journal Title: Pharmaceutical Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.