LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strategy for Cytoplasmic Delivery Using Inorganic Particles.

Photo from wikipedia

Endosome escape is a key process for intracellular uptake of intact biomolecules and therapeutics, such as nucleic acids. Lysosome escape is a more common pathway during endocytosis, while some biomolecular,… Click to show full abstract

Endosome escape is a key process for intracellular uptake of intact biomolecules and therapeutics, such as nucleic acids. Lysosome escape is a more common pathway during endocytosis, while some biomolecular, organic and inorganic materials are found to enhance the endosome escape, and several mechanisms have been proposed accordingly. Specifically, some inorganic nanomaterials show their unique mechanisms of action for enhanced endosome escape, including salt osmotic effect and gas blast effect. These inorganic nanomaterials are basically weakly alkaline and are naturally featured with the anti-acidification capacity, with limited solubility in neutral solutions. This review paper has briefly presented the strategies in the design of inorganic nanoparticle-based cellular delivery vehicles with endosome escapability and discussed a few typical inorganic nanomaterials that are currently widely examined for delivery purpose. A brief summary and prospect for this kind of inorganic nanomaterials are provided.

Keywords: cytoplasmic delivery; endosome escape; delivery; strategy cytoplasmic; inorganic nanomaterials

Journal Title: Pharmaceutical research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.