LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using a Model-based Material Sparing Approach for Formulation and Process Development of a Roller Compacted Drug Product.

Photo from wikipedia

The present work details a material sparing approach that combines material profiling with Instron uniaxial die-punch tester and use of a roller compaction mathematical model to guide both formulation and… Click to show full abstract

The present work details a material sparing approach that combines material profiling with Instron uniaxial die-punch tester and use of a roller compaction mathematical model to guide both formulation and process development of a roller-compacted drug product. True density, compression profiling, and frictional properties of the pre-blend powders are used as inputs for the predictive roller compaction model, while flow properties, particle size distribution, and assay uniformity of roller compaction granules are used to select formulation composition and ribbon solid fraction. Using less than 10 g of a model drug compound for material profiling, roller compacted blend in capsule formulations with appropriate excipient ratios were developed at both 1.4% and 14.4% drug loadings. Subsequently, scale-up batches were successfully manufactured based on the roller compaction process parameters obtained from predictive modeling. The measured solid fractions of roller compaction ribbon samples from the scale-up batches were in good agreement with the target solid fraction of the modeling. This approach demonstrated considerable advantages through savings in both materials and number of batches in the development of a roller-compacted drug product, which is of particular value at early development stages when drug substance is often limited and timelines are aggressive.

Keywords: roller; roller compacted; drug; roller compaction; development roller

Journal Title: Pharmaceutical research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.