The conical screen mill (comill) is investigated as a dry-coating process for flowability and bulk density enhancement of pharmaceutical powders. In this study, the effectiveness of the comill is improved… Click to show full abstract
The conical screen mill (comill) is investigated as a dry-coating process for flowability and bulk density enhancement of pharmaceutical powders. In this study, the effectiveness of the comill is improved by using modified screens with reduced open area. In comparison to the screens provided by the comill manufacturer, the modified screens increase mean residence time of the process and improve the extent of flowability and bulk density enhancement. The effectiveness of the comill as a dry-coating process is demonstrated using Avicel PH 105, a fine grade of microcrystalline cellulose, as a model cohesive powder. The process is evaluated thoroughly using a lab scale comill and scalability is demonstrated using a manufacturing scale model. The use of the modified screens is also compared against the so-called "multi-pass" approach in which material is passed through the comill, collected, and passed through once or several times. While the "multi-pass" approach is offered as a simple method to increase mean residence time and to improve process effectiveness, the use of the modified screens is shown to be the superior approach. Due to the ubiquitous use of the comill and the improvement in effectiveness attained in this study, dry-coating is shown to be a practical and readily implemented process for the pharmaceutical industry.
               
Click one of the above tabs to view related content.