LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A naturally occurring conditional albino mutant in rice caused by defects in the plastid-localized OsABCI8 transporter

Photo by milkbox from unsplash

A wide range of molecules are transported across membranes by the ATP binding cassette (ABC) transporters. Plants possess a collection of ABC proteins bearing similarities to the components of prokaryotic… Click to show full abstract

A wide range of molecules are transported across membranes by the ATP binding cassette (ABC) transporters. Plants possess a collection of ABC proteins bearing similarities to the components of prokaryotic multi subunit ABC transporters, designed as ABC group I. However the functions of most of them are not well understood. Here, we characterized a naturally occurring rice mutant that exhibited albino phenotype under continuous rainy days in the field, but gradually recovered to normal green after the rainy season. Molecular and genetic analyses revealed that the phenotypes were caused by a mutation in the OsABCI8 that encoded a member of the ABCI family. Subcellular localization demonstrated that OsABCI8 is a chloroplast ABC transporter. Expression of OsABCI8 is significantly enhanced in rainy days compared to sunny days. Besides defects in chloroplast development and chlorophyll biosynthesis, the mutant phenotype is accompanied by a higher accumulation of iron, suggesting that OsABCI8 is involved in iron transportation and/or homeostasis in rice. Our results demonstrate that OsABCI8 represents a conserved ABCI protein involved in transition metals transportation and/or homeostasis and suggest an important role of the plastid-localized OsABCI8 for chloroplast development.

Keywords: albino; rice; localized osabci8; plastid localized; naturally occurring; transporter

Journal Title: Plant Molecular Biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.