LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High abundance of non-mycorrhizal plant species in severely phosphorus-impoverished Brazilian campos rupestres

Background and aimsWe sought to describe the species and functional composition of Brazilian campos rupestres plant communities on severely nutrient-impoverished white sands, to test hypotheses relating plant communities and physiological… Click to show full abstract

Background and aimsWe sought to describe the species and functional composition of Brazilian campos rupestres plant communities on severely nutrient-impoverished white sands, to test hypotheses relating plant communities and physiological adaptations to infertile soils. Based on recently-published information on a south-western Australian dune chronosequence, we hypothesised that campos rupestres plant communities would similarly contain a relatively large proportion of non-mycorrhizal species, because of the phosphorus-(P) impoverished nature of the soils. We also sought to test the hypothesis that many of these non-mycorrhizal species have high leaf manganese (Mn) concentrations as a consequence of carboxylate exudation to mobilise soil P.MethodsWe conducted flora surveys and quantified mycorrhizal status and foliar Mn concentrations in field sites with strongly-weathered sandy soils. Rhizosphere carboxylates were collected from glasshouse-grown plants to assess a potential correlation of carboxylates and leaf Mn concentrations.ResultsSoils were depleted of all major plant nutrients. Non-mycorrhizal plants were abundant in most field sites (mean relative cover = 48%). Vellozia species were dominant aboveground; belowground, roots were colonised more by dark septate endophytic fungi than by mycorrhizal fungi. From the field sites, foliar Mn concentrations in non-mycorrhizal species increased with decreasing soil P concentrations, but only when soil Mn concentrations were above a minimum threshold (exchangeable [Mn] above detection limit). Across all species, however, there was no relationship of foliar Mn concentrations with soil P concentrations.ConclusionsOur hypothesis that white-sand campos rupestres communities contain a relatively large proportion of non-mycorrhizal plants was supported. Comparison with similar ecosystems in south-western Australia suggests that plant communities on severely P-impoverished sandy soils, despite differing evolutionary histories and little overlap in plant families, follow convergent evolutionary paths towards increasing abundance of non-mycorrhizal species.

Keywords: non mycorrhizal; plant; campos rupestres

Journal Title: Plant and Soil
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.