LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distribution of inositol phosphates in animal feed grains and excreta: distinctions among isomers and phosphate oxygen isotope compositions

Photo from wikipedia

Background and AimsPhytate (myo-IP6) is a common form of organic phosphorus in the environment. Little information is available, however, about the distribution of phytate and its degradation products. In this… Click to show full abstract

Background and AimsPhytate (myo-IP6) is a common form of organic phosphorus in the environment. Little information is available, however, about the distribution of phytate and its degradation products. In this research, we aimed to identify the compositions of phytate in different natural P sources as well as to explore a reliable method to measure their isotope signatures so that the link between original phytate and P outputs in the environment could be established.MethodsA variety of feed ingredients for selected ruminant and non-ruminant animals and their excreta were analyzed using HPIC (high-performance ion chromatography) and their oxygen isotope (δ18OPA-Pi) signatures were identified using IRMS (isotope ratio mass spectrometry) method.ResultsThe HPIC results show that IP6 was dominant in all grains, followed by IP5 and several IP4 isomers, and an insignificant amount of IP3. Similarly, IP6 and IP5 were also detected in all animal feeds and several excreta. More importantly, the distribution of different IPx species in a grain type was essentially the same. The δ18OPA values of phytate in grains varied from 20.5 to 24.2 ‰, while the δ18OPi values of inorganic P in the same grains were heavier by 0.4-3.2‰. Similarly, the δ18OPA values of phytate in animal feeds and excreta were within the ranges of grain phytate.ConclusionsOverall, combination of results from IRMS and HPIC analyses provided important information on the distribution of IPx species in various sources and their distinct oxygen isotope ratios pointed towards the possibility of connecting the original phytate sources to degradation products in the environment.

Keywords: distribution inositol; oxygen isotope; inositol phosphates; feed; distribution

Journal Title: Plant and Soil
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.