LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A property of conditional expectation

Photo from archive.org

Let $$({\mathcal {M}},\tau )$$(M,τ) be a semi-finite von Neumann algebra, $$({\mathcal {N}},\tau |_{{\mathcal {N}}})$$(N,τ|N) be a semi-finite von Neumann subalgebra and $${\mathcal {E}}:\;{\mathcal {M}}\rightarrow {\mathcal {N}}$$E:M→N be a conditional expectation… Click to show full abstract

Let $$({\mathcal {M}},\tau )$$(M,τ) be a semi-finite von Neumann algebra, $$({\mathcal {N}},\tau |_{{\mathcal {N}}})$$(N,τ|N) be a semi-finite von Neumann subalgebra and $${\mathcal {E}}:\;{\mathcal {M}}\rightarrow {\mathcal {N}}$$E:M→N be a conditional expectation which leaves $$\tau $$τ invariant. We proved super-majorization for the conditional expectation $${\mathcal {E}}$$E and related inequalities.

Keywords: conditional expectation; property conditional; expectation

Journal Title: Positivity
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.