Let $$({\mathcal {M}},\tau )$$(M,τ) be a semi-finite von Neumann algebra, $$({\mathcal {N}},\tau |_{{\mathcal {N}}})$$(N,τ|N) be a semi-finite von Neumann subalgebra and $${\mathcal {E}}:\;{\mathcal {M}}\rightarrow {\mathcal {N}}$$E:M→N be a conditional expectation… Click to show full abstract
Let $$({\mathcal {M}},\tau )$$(M,τ) be a semi-finite von Neumann algebra, $$({\mathcal {N}},\tau |_{{\mathcal {N}}})$$(N,τ|N) be a semi-finite von Neumann subalgebra and $${\mathcal {E}}:\;{\mathcal {M}}\rightarrow {\mathcal {N}}$$E:M→N be a conditional expectation which leaves $$\tau $$τ invariant. We proved super-majorization for the conditional expectation $${\mathcal {E}}$$E and related inequalities.
               
Click one of the above tabs to view related content.