LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An RFID-based solution for monitoring sprayer movement in an orchard/vineyard

Photo by svenwilhelm from unsplash

Pesticide application monitoring and long-term data recording in the field is typically the first step in fruit traceability. In a spray monitoring and guiding system, identification of the sprayer movement… Click to show full abstract

Pesticide application monitoring and long-term data recording in the field is typically the first step in fruit traceability. In a spray monitoring and guiding system, identification of the sprayer movement is a key part of technology. Although Global Navigation Satellite System (GNSS) is a widely used system to obtain location information, in an orchard/vineyard, especially one in which the trees/plants have tall and large canopies, the continuity and stability of the GNSS signal may decrease dramatically and lead to failure of guidance. A Radio Frequency Identification Devices (RFID) solution for identifying sprayer travel was proposed, and a spray monitoring and guiding system was designed based on this solution. In-lab system simulation test and field test results showed that the system could distinguish the travel direction of the sprayer, identify its location in the field, record flow rate information, calculate sprayed volume, and show all the above information on a computer screen in real-time when the RFID reader had successfully registered each RFID card. For the monitoring and guiding system with one antenna on each side, which required the cards and the antennas to be at the same height, the best relative position was found by placing the card parallel to the antenna. The results of tests in the field showed that an improved system with two antennas on each side, which only required the cards to be put in the band with a width of 0.26 m between the centers of the two antennas, worked better with the best antenna angle of 125° when the speed of the sprayer was less than 1.8 m/s.

Keywords: system; orchard vineyard; field; sprayer movement; solution; based solution

Journal Title: Precision Agriculture
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.