LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Circular spectropolarimetric sensing of higher plant and algal chloroplast structural variations

Photo by igorson from unsplash

Photosynthetic eukaryotes show a remarkable variability in photosynthesis, including large differences in light-harvesting proteins and pigment composition. In vivo circular spectropolarimetry enables us to probe the molecular architecture of photosynthesis… Click to show full abstract

Photosynthetic eukaryotes show a remarkable variability in photosynthesis, including large differences in light-harvesting proteins and pigment composition. In vivo circular spectropolarimetry enables us to probe the molecular architecture of photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological and structural information. In the present study, we have measured the circular polarizance of several multicellular green, red, and brown algae and higher plants, which show large variations in circular spectropolarimetric signals with differences in both spectral shape and magnitude. Many of the algae display spectral characteristics not previously reported, indicating a larger variation in molecular organization than previously assumed. As the strengths of these signals vary by three orders of magnitude, these results also have important implications in terms of detectability for the use of circular polarization as a signature of life.

Keywords: sensing higher; plant algal; circular spectropolarimetric; variations circular; higher plant; spectropolarimetric sensing

Journal Title: Photosynthesis Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.