Measurement-device-independent quantum key distribution (MDI-QKD) is a promising protocol for realizing long-distance secret keys sharing. However, its key rate is relatively low when the finite-size effect is taken into account.… Click to show full abstract
Measurement-device-independent quantum key distribution (MDI-QKD) is a promising protocol for realizing long-distance secret keys sharing. However, its key rate is relatively low when the finite-size effect is taken into account. In this paper, we consider statistical fluctuation analysis for the three-intensity decoy-state MDI-QKD system based on the recent work (Zhang et al. in Phys Rev A 95:012333, 2017) and further compare its performance with that of applying the Gaussian approximation technique and the Chernoff bound method. The numerical simulations demonstrate that the new method has apparent enhancement both in key generation rate and transmission distance than using Chernoff bound method. Meanwhile, the present work still shows much higher security than Gaussian approximation analysis.
               
Click one of the above tabs to view related content.