LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chau–Wang–Wong17 scheme is experimentally more feasible than the six-state scheme

Photo by hudsoncrafted from unsplash

Recently, Chau et al. (Phys Rev A 95:022311, 2017) reported a quantum key distribution (QKD) scheme using four-dimensional qudits. Surprisingly, as a function of the bit error rate of the… Click to show full abstract

Recently, Chau et al. (Phys Rev A 95:022311, 2017) reported a quantum key distribution (QKD) scheme using four-dimensional qudits. Surprisingly, as a function of the bit error rate of the raw key, the secret key rate of this scheme is equal to that of the (qubit-based) six-state scheme under one-way classical communication using ideal apparatus in the limit of arbitrarily long raw key length. Here, we explain why this is the case in spite of the fact that these two schemes are not linearly related to each other. More importantly, we find that in terms of the four-dimensional dit error rate of the raw key, the Chau et al.’s scheme can tolerate up to 21.6% using one-way classical communications, which is better than the Sheridan and Scarani’s scheme (Phys Rev A 82:030301(R), 2010). In addition, we argue the experimental advantages of the Chau et al. implementation over the standard six-state scheme and report a corresponding proof-of-principle experiment using passive basis selection with decoy states. We also compare our experiment with the recent high secret key rate implementation of the Sheridan and Scarani’s scheme by Islam et al. (Sci Adv 3:e1701491, 2017).

Keywords: key; state scheme; six state; scheme; rate

Journal Title: Quantum Information Processing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.