LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

What difference does multiple imputation make in longitudinal modeling of EQ-5D-5L data? Empirical analyses of simulated and observed missing data patterns

Photo by austriannationallibrary from unsplash

Although multiple imputation is the state-of-the-art method for managing missing data, mixed models without multiple imputation may be equally valid for longitudinal data. Additionally, it is not clear whether missing… Click to show full abstract

Although multiple imputation is the state-of-the-art method for managing missing data, mixed models without multiple imputation may be equally valid for longitudinal data. Additionally, it is not clear whether missing values in multi-item instruments should be imputed at item or score-level. We therefore explored the differences in analyzing the scores of a health-related quality of life questionnaire (EQ-5D-5L) using four approaches in two empirical datasets. We used simulated (GR dataset) and observed missingness patterns (ABCD dataset) in EQ-5D-5L scores to investigate the following approaches: approach-1) mixed models using respondents with complete cases, approach-2) mixed models using all available data, approach-3) mixed models after multiple imputation of the EQ-5D-5L scores, and approach-4) mixed models after multiple imputation of EQ-5D 5L items. Approach-1 yielded the highest estimates of all approaches (ABCD, GR), increasingly overestimating the EQ-5D-5L score with higher percentages of missing data (GR). Approach-4 produced the lowest scores at follow-up evaluations (ABCD, GR). Standard errors (0.006–0.008) and mean squared errors (0.032–0.035) increased with increasing percentages of simulated missing GR data. Approaches 2 and 3 showed similar results (both datasets). Complete cases analyses overestimated the scores and mixed models after multiple imputation by items yielded the lowest scores. As there was no loss of accuracy, mixed models without multiple imputation, when baseline covariates are complete, might be the most parsimonious choice to deal with missing data. However, multiple imputation may be needed when baseline covariates are missing and/or more than two timepoints are considered.

Keywords: imputation; multiple imputation; mixed models; approach mixed; missing data

Journal Title: Quality of Life Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.