LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On Spatial Structuring of the F2 Layer Studied by the Satellite Radio Sounding of the Ionosphere Disturbed by High-Power HF Radio Waves

Photo from wikipedia

We present the results of studying the characteristics of the artificial plasma structures excited in the ionospheric F2 region modified by high-power HF radio waves. The experiments were carried out… Click to show full abstract

We present the results of studying the characteristics of the artificial plasma structures excited in the ionospheric F2 region modified by high-power HF radio waves. The experiments were carried out at the Sura heating facility using satellite radio sounding of the ionosphere. The plasma density profile was reconstructed with the highest possible spatial resolution for today, about 4 km. In a direction close to the magnetic zenith of the pump wave, the following phenomena were observed: the formation of a cavity with a 15% lower plasma density at the altitudes of the F2 layer and below; the formation of an area with plasma density increased by 12% at altitudes greater than 400 km. With a long-term quasiperiodic impact of the pump wave on the ionosphere, wavy large-scale electron-density perturbations (the meridional scale λx ≈ 130 km and the vertical scale λz ≈ 440 km) are also formed above the Sura facility. These perturbations can be due to the plasma density modulation by an artificial acoustic-gravity wave with a period of 10.6 m, which was formed by the heat source inside a large-scale cavity with low plasma density; there is generation of the electron density irregularities for the electrons with ΔNe/Ne ≈ 3% in the form of layers having the sizes 10–12 km along and about 24 km across the geomagnetic field, which are found both below and above the F2-layer maximum. The mechanisms of the formation of these plasma structures are discussed.

Keywords: high power; radio waves; radio; density; power radio; plasma density

Journal Title: Radiophysics and Quantum Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.