LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kinetic studies of methanol dehydrogenation. Part III: carbon-supported copper catalysts

Photo by kdghantous from unsplash

The kinetics of methanol dehydrogenation over carbon-supported copper catalyst was studied. The catalyst was prepared by the incipient wetness impregnation of carbonaceous graphite-like material Sibunit with aqueous solution of copper… Click to show full abstract

The kinetics of methanol dehydrogenation over carbon-supported copper catalyst was studied. The catalyst was prepared by the incipient wetness impregnation of carbonaceous graphite-like material Sibunit with aqueous solution of copper nitrate. The resulting Cu/C samples were calcined and reduced in a hydrogen flow within temperature interval of 200–400 °C. Experiments were carried out in a flow-through fixed-bed tubular reactor. Observable rate constants were determined for the reactions of methanol dehydrogenation to methyl formate and methyl formate decomposition on carbon monoxide and hydrogen. The process of methanol dehydrogenation in a tubular reactor was simulated by means of mathematical modeling. The estimation of kinetic parameters in accordance with experimental data obtained for the Cu/C sample reduced at 300 °C has allowed us to consider the reversibility of methanol dehydrogenation reaction.

Keywords: supported copper; carbon supported; methanol dehydrogenation; dehydrogenation

Journal Title: Reaction Kinetics, Mechanisms and Catalysis
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.