Pure CeO2 and CeO2–MOx (M: Mn, Zr and Ni) catalysts were synthesized by the co-precipitation method and evaluated for the oxidation of toluene. The characterization showed that the specific surface… Click to show full abstract
Pure CeO2 and CeO2–MOx (M: Mn, Zr and Ni) catalysts were synthesized by the co-precipitation method and evaluated for the oxidation of toluene. The characterization showed that the specific surface area and the porous texture of catalysts were improved due to the doping of transition metal. Besides, the doping of MOx into ceria contributed to the generation of structural defects, which could contribute to the easier storage and release of surface oxygen. Furthermore, the CeO2–MOx (M: Mn, Zr and Ni) catalysts exhibited higher concentration of Ce3+ and surface adsorbed oxygen than pure CeO2, which could correlate with the generation of oxygen vacancies, resulting in the enhancement of redox properties. Hence, CeO2–MnOx exhibited the best apparent catalytic activity of toluene due to its more Ce3+, structural defects and active oxygen species.
               
Click one of the above tabs to view related content.