LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unsupported CoNixMo sulfide hydrodesulfurization catalysts prepared by the thermal decomposition of trimetallic tetrabutylammonium thiomolybdate: effect of nickel on sulfur removal

Photo from wikipedia

Herein we report the synthesis of unsupported bimetallic CoMo and trimetallic CoNiMo sulfide catalysts prepared by thermal decomposition (ex situ activation) of carbon-containing precursors and varying the nickel concentration for… Click to show full abstract

Herein we report the synthesis of unsupported bimetallic CoMo and trimetallic CoNiMo sulfide catalysts prepared by thermal decomposition (ex situ activation) of carbon-containing precursors and varying the nickel concentration for the hydrodesulfurization (HDS) of dibenzothiophene. The catalysts prepared were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma mass spectrometry and BET surface area measurements. The results from the characterization showed that the addition of an alkyl chained precursor results in non-porous catalysts with low surface area and high carbon content, which negatively affects the formation of crystalline phases such as molybdenum sulfide and their performance in the HDS reaction. Furthermore, the addition of nickel has a negative effect on the catalysts since it was observed that when it was added, the reaction rate values decreased and the catalyst with the highest catalytic activity turned out to be the CoMo catalyst. Although nickel catalysts generally have more affinity for hydrogenation reactions, unsupported trimetallic catalysts showed a preference for the direct desulfurization pathway.

Keywords: sulfide; microscopy; prepared thermal; thermal decomposition; catalysts prepared

Journal Title: Reaction Kinetics, Mechanisms and Catalysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.