LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of TiO2 nanotubes using different alkaline media and their applications in photocatalysis and DSSCs

Photo from wikipedia

TiO2 nanotubes (TNTs) were successfully synthesized from different alkaline media (i.e., NaOH and KOH) by using a microwave hydrothermal process. The effects of different alkaline media on the formation of… Click to show full abstract

TiO2 nanotubes (TNTs) were successfully synthesized from different alkaline media (i.e., NaOH and KOH) by using a microwave hydrothermal process. The effects of different alkaline media on the formation of TiO2 nanotubes and their physicochemical properties were investigated. The phases of different TiO2 nanostructures were studied by using X-ray diffraction patterns. Morphologies of the nanostructures were observed with a transmission electron microscope. The optical properties of the nanostructures were evaluated through the absorption behavior using UV–Vis diffuse reflectance spectroscopy. The photocatalytic activities of the TiO2 nanostructures were evaluated by the degradation of methylene blue aqueous dye solution under the simulated solar light irradiation. Similarly, the photovoltaic efficiencies of the prepared samples were investigated by making photo-anode layers in the Dye Sensitized Solar Cells (DSSCs). The results revealed that in comparison to the single layered TiO2 nanostructures in the DSSC, creation of a double layer structure significantly enhanced the efficiency of DSSC.

Keywords: tio2; synthesis tio2; alkaline media; tio2 nanotubes; tio2 nanostructures; different alkaline

Journal Title: Research on Chemical Intermediates
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.