LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of surface modification temperature on the hydrodesulfurization performance of Ni2P/MCM-41 catalyst

Photo from wikipedia

Highly active MCM-41-supported nickel phosphide catalysts for hydrodesulfurization (HDS) were synthesized by surface modification, in which the surface of supported Ni2P catalysts were directly modified at different temperatures by air… Click to show full abstract

Highly active MCM-41-supported nickel phosphide catalysts for hydrodesulfurization (HDS) were synthesized by surface modification, in which the surface of supported Ni2P catalysts were directly modified at different temperatures by air instead of being passivated by an O2/N2 mixture. In addition, the prepared catalysts need not be activated under high temperature in H2 flow prior to the HDS reaction as in the conventional method. X-ray diffraction, X-ray photoelectron spectroscopy, N2-adsorption specific surface area measurements, CO chemisorption and transmission electron microscope were used to characterize the resulting catalysts. The effect of modification temperature on HDS performance of the catalysts was investigated. The results showed that the surface modification could promote the formation of smaller and more uniform Ni2P particles and the exposure of more Ni atoms. The modification method is simple and energy-saving, and the catalyst modified by air at 150 °C presents a dibenzothipohene conversion of 95.4%, which is 6.8% higher than that of a catalyst passivated by O2/N2 mixture followed by high-temperature and H2 pretreatments.

Keywords: modification temperature; surface; catalyst; modification; surface modification

Journal Title: Research on Chemical Intermediates
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.