Chemical preparation of the bis(aqua) iron(III) metalloporphyrin [FeIII(TClPP)(H2O)2](SO3CF3)·2(Pnz)·3/4(C6H12)·2H2O (TClPP = TClPP = 5,10,15,20-tetra(para-chlorophenyl)porphyrinato and Pnz = phenazine) coordination complex (I) was made. The crystal structure of (I) was determined by X-ray single-crystal diffraction and elucidated by… Click to show full abstract
Chemical preparation of the bis(aqua) iron(III) metalloporphyrin [FeIII(TClPP)(H2O)2](SO3CF3)·2(Pnz)·3/4(C6H12)·2H2O (TClPP = TClPP = 5,10,15,20-tetra(para-chlorophenyl)porphyrinato and Pnz = phenazine) coordination complex (I) was made. The crystal structure of (I) was determined by X-ray single-crystal diffraction and elucidated by Hirshfeld surface approach. Magnetic, spectroscopic and electrochemical properties were also reported and discussed. The mean equatorial distance (Fe–Np) between the iron(III) atom and porphyrin nitrogen atoms is appropriate to a high-spin (S = 5/2) iron(III) complex. The high-spin state is also confirmed by both magnetic and electron paramagnetic resonance (EPR) spectroscopy data. The repetitive building unit of the crystal structure provides [FeIII(TClPP)(H2O)2]+ ion complexes, two non-coordinated Pnz molecules and two water molecules which are interconnected by O–H···O/N/Cl, C–H···O/F/Cl hydrogen bonds, and by C–X···π, C–H···π and π–π stacking intermolecular contacts, forming a 3D supramolecular network. The role and nature of these intermolecular interactions were quantitatively analysed by 3D Hirshfeld surface analysis and associated 2D fingerprint plots. Cyclic voltammetry measurements indicate a one-electron reversible reduction wave with an E1/2 (Fe(III)/Fe(II) half-potential value of −0.24 V, which confirms the high-spin S = 5/2 state of the studied complex.
               
Click one of the above tabs to view related content.