LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancement of photodegradation efficiency, photoluminescence quantum yield, and magnetization in highly Yb3+-doped CdO nanoparticles synthesized via sol–gel method

Photo by neom from unsplash

Cd1−xYbxO (x = 0, 1, 5, 10, 15 mol%) nanoparticles (NPs) were successfully synthesized by pulverizing the product obtained from a sol–gel process. The crystalline structure of the synthesized samples was established by… Click to show full abstract

Cd1−xYbxO (x = 0, 1, 5, 10, 15 mol%) nanoparticles (NPs) were successfully synthesized by pulverizing the product obtained from a sol–gel process. The crystalline structure of the synthesized samples was established by X-ray diffraction analysis. Scanning electron microscopy revealed that the prepared samples were nanoscale and the size of the NPs decreased with increasing dopant concentration. Elemental analysis of the products was carried out by energy-dispersive X-ray spectroscopy. Ultraviolet–visible (UV–Vis) and Fourier-transform infrared (FT-IR) spectroscopies were used to characterize the synthesized species. Increasing the Yb3+ ion level in the host matter resulted in decreased bandgap energy. Photoluminescence measurements confirmed the enhanced intensity of the characteristic emissions in the Yb3+-doped CdO NPs, indicating appropriate substitution of Cd2+ with Yb3+ ions. Magnetic measurements revealed that, with addition of Yb3+ ion, the magnetic behavior of the samples changed. Increasing the dopant ion concentration, thereby decreasing the size of the obtained NPs, changed their behavior from paramagnetic to superparamagnetic, with increased saturation magnetization (MS) for higher dopant level. Photocatalytic measurements under UV and natural sunlight irradiation revealed that the samples prepared with high dopant concentration (15 mol%) exhibited excellent photocatalytic activity under natural sunlight for decomposition of methylene blue dye.

Keywords: sol gel; doped cdo; photoluminescence; yb3 doped; yb3

Journal Title: Research on Chemical Intermediates
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.