Ammoxidation of m -xylene is evaluated in the presence of a customized heteropoly acid catalyst as an imidazole/molybdovanadophosphoric acid (imidazole/PMoV). Imidazole is employed to maintain its heterogeneous phase during the… Click to show full abstract
Ammoxidation of m -xylene is evaluated in the presence of a customized heteropoly acid catalyst as an imidazole/molybdovanadophosphoric acid (imidazole/PMoV). Imidazole is employed to maintain its heterogeneous phase during the ammoxidation reaction and to provide the thermal stability of PMoV with the expectation that imidazole can generate strong electronic interactions with terminal molybdenum-oxygen on PMoV. The characterizations of the prepared catalysts are performed using SEM–EDX, XRD, FT-IR, Raman, XPS, and TGA to prove the physical and chemical changes by incorporating imidazole to PMoV, respectively. Also, the thermal stability of the developed catalyst is confirmed by the means of heat treatment test at relatively high temperature. The composite catalyst, imidazole/PMoV, shows an excellent conversion rate of over 98% with high selectivity of isophthalonitrile in m -xylene ammoxidation. Moreover, while the imidazole-free PMoV catalyst is deactivated and washed out during the reaction, the catalyst durability of the imidazole/PMoV is preserved without significant activity loss after 5 reaction cycles at 380 °C.
               
Click one of the above tabs to view related content.