LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase transformations in Cd–Ni nanostructured system at elevated temperatures

Photo from wikipedia

Using X-ray diffraction (both in vacuum and in air), derivatomass-spectrometry and thermo-programmed oxidation, phase transformations in nanostructured Cd–Ni system occurring while heating up 720 °C were described. These metal powders… Click to show full abstract

Using X-ray diffraction (both in vacuum and in air), derivatomass-spectrometry and thermo-programmed oxidation, phase transformations in nanostructured Cd–Ni system occurring while heating up 720 °C were described. These metal powders were obtained by joint reduction from aqueous solutions of salts with hydrazine. When study their composition, earlier unknown phases were detected (intermetallide CdNi3 and solid solution CdxNi1–x with face centered cubic structure) and among the known intermetallides (Cd5Ni and CdNi), only Cd5Ni was found. As a consequence, phase transformations in the obtained nanostructured powders were remarkably different from those present on the Cd–Ni phase diagram. The intermediates and FCC phase decompose independently with formation of individual initial components (Cd and Ni) without intermediate product. At relatively high Cd concentration in the system, intermediate CdNi3 phase formation from Cd5Ni and CdxNi1–x phases, which are polar opposites in composition, is possible. The decomposition temperatures of Cd5Ni and melting point of Cd in the nanostructured state were lower than those specified by the phase diagram by 170 and 70 °C, respectively, which well corresponded to the concept of effective (high) temperatures attributed to the nanostructured systems due to the energy saturation of the con stituent nanocrystallites.

Keywords: phase; nanostructured system; phase transformations; system elevated; transformations nanostructured

Journal Title: Russian Chemical Bulletin
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.