LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic Properties of Iron Oxide Nanoparticles Obtained by Laser Evaporation

Photo from wikipedia

The paper concentrates on a synthesis of spherical magnetic particles obtained by laser evaporation under various process conditions. Depending on the process conditions, which include the pressure in a process… Click to show full abstract

The paper concentrates on a synthesis of spherical magnetic particles obtained by laser evaporation under various process conditions. Depending on the process conditions, which include the pressure in a process chamber, laser pulse duration, mean laser power, and the type of power gas, the stoichiometry of the material ranges from Fe2.70O4 to Fe2.84O4, while the average diameter of nanoparticles ranges between 10–23 nm. The nanoparticles have an inverse spinel structure. In terms of the magnetic properties, the samples are a superparamagnetic ensemble. The spherical shape of the majority of nanoparticles as well as the existence of merely one magnetic phase are verified by the characteristics of microwave absorption. A relatively high saturation magnetization and a narrow size distribution of small nanoparticles obtained at 700 mmHg working pressure, 100 ms pulse duration, and 200 W laser power allow the authors to consider these conditions to be the most optimum for the nanopowder synthesis and recommend them for biological applications.

Keywords: nanoparticles obtained; obtained laser; magnetic properties; laser evaporation; properties iron

Journal Title: Russian Physics Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.