LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Localization of Plastic Deformation in Aluminum Single Crystals at Different Scale Levels

Photo from wikipedia

The paper generalizes results of investigating the localization and fragmentation of plastic deformation in aluminum single crystals having a different orientation of the compression axis and lateral faces. The surface… Click to show full abstract

The paper generalizes results of investigating the localization and fragmentation of plastic deformation in aluminum single crystals having a different orientation of the compression axis and lateral faces. The surface topography of the samples induced by plastic deformation includes such elements as deformation bands, folds and shear markings observed at different scale levels (macro, meso and micro). The morphological uniformity is identified for these elements in the aluminum single crystals. Depending on the resolution required, the quantification of the shear deformation markings is provided by the optical microscope and the scanning and transmission electron microscopes using the replication technique. The following parameters are obtained: the distance between the nearest shear deformation markings, width of shear markings, local shear; shear γ; the single-crystal volume fraction in which the shear deformation occurs at macro, meso, and micro-levels. The statistical examination of the shear deformation markings in aluminum single crystals with different geometry is performed at these three levels and allows us to conclude that the micro-scale level makes the main contribution to the shear deformation.

Keywords: crystals different; aluminum single; single crystals; shear deformation; deformation; plastic deformation

Journal Title: Russian Physics Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.