LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure and Phase Composition of Heat-Affected Zone of Austenite Steel After Deformation

Photo from wikipedia

The paper presents the transmission electron microscopy (TEM) investigations of the thin film structure and phase composition of the heat-affected zone (HAZ) of a weld joint produced by manual metal… Click to show full abstract

The paper presents the transmission electron microscopy (TEM) investigations of the thin film structure and phase composition of the heat-affected zone (HAZ) of a weld joint produced by manual metal arc welding (MMAW) of 0.12C–18Cr–10Ni–1Ti–Fe austenite steel exposed then to plastic deformation. The test machine INSTRON-1185 is used to perform quasi-static tensile tests at room temperature and a 1.7∙10 –4 s –1 strain rate up to 5 and 37% deformations. TEM investigations are carried out within the HAZ, at a 1 mm distance to the weld line, in the direction of the parent metal and at 0.5 mm distance to the weld deposit. It is shown that MMAW results in the formation of ε-martensite both in the parent metal and weld deposit regions. In the latter, γ → ε phase transformation occurs faster. Plastic strain ranging between 0–5% throughout the HAZ leads to further γ → ε phase transformation. In the weld deposit of the HAZ region, this phase transformation is also more intensive. Further increase in the degree of plastic strain from 5 to 37% results in γ → ε → α phase transformation and an elastoplastic lattice distortion of the α-phase. The plastic flexure remains in the crystal lattice of the γ-phase. The bulk material in the HAZ region satisfies the following conditions: scalar dislocation density is higher than the excess, and internal shear stresses are higher than long-ranging.

Keywords: phase; phase composition; affected zone; structure phase; heat affected; composition heat

Journal Title: Russian Physics Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.