LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Promoting work Engagement in the Accounting Profession: a Machine Learning Approach

Photo from wikipedia

In this paper, a non-linear multi-dimensional (machine learning-based) index for accountants that relates work engagement scores (according to accountants’ perceptions) with the seven Job Quality Indices (JQI) (proposed by Eurofound)… Click to show full abstract

In this paper, a non-linear multi-dimensional (machine learning-based) index for accountants that relates work engagement scores (according to accountants’ perceptions) with the seven Job Quality Indices (JQI) (proposed by Eurofound) has been proposed. The goal of the research is two-fold, namely, (i) to quantify the extent to which the JQI variables explain the work engagement scores, and (ii) to determine which JQI variables most affect the work engagement scores. The best performing regression model achieved a competitive root mean square percentage, highlighting that the selected variables primarily determine the work engagement values. Other important findings include (i) that the work engagement index is mainly influenced by the social environment index and (ii) that the skills and discretion and prospects indices are also crucial in the promotion of the work engagement of accountants. The instrument implemented could be employed by human resources practitioners to propose efficient human resources strategies that improve both individual well-being and company performance in the accounting sector.

Keywords: work engagement; machine learning; work; accounting

Journal Title: Social Indicators Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.