We analyze the computational efficiency of approximate Bayesian computation (ABC), which approximates a likelihood function by drawing pseudo-samples from the associated model. For the rejection sampling version of ABC, it… Click to show full abstract
We analyze the computational efficiency of approximate Bayesian computation (ABC), which approximates a likelihood function by drawing pseudo-samples from the associated model. For the rejection sampling version of ABC, it is known that multiple pseudo-samples cannot substantially increase (and can substantially decrease) the efficiency of the algorithm as compared to employing a high-variance estimate based on a single pseudo-sample. We show that this conclusion also holds for a Markov chain Monte Carlo version of ABC, implying that it is unnecessary to tune the number of pseudo-samples used in ABC-MCMC. This conclusion is in contrast to particle MCMC methods, for which increasing the number of particles can provide large gains in computational efficiency.
               
Click one of the above tabs to view related content.