LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparing clusterings and numbers of clusters by aggregation of calibrated clustering validity indexes

Photo from archive.org

A key issue in cluster analysis is the choice of an appropriate clustering method and the determination of the best number of clusters. Different clusterings are optimal on the same… Click to show full abstract

A key issue in cluster analysis is the choice of an appropriate clustering method and the determination of the best number of clusters. Different clusterings are optimal on the same data set according to different criteria, and the choice of such criteria depends on the context and aim of clustering. Therefore, researchers need to consider what data analytic characteristics the clusters they are aiming at are supposed to have, among others within-cluster homogeneity, between-clusters separation, and stability. Here, a set of internal clustering validity indexes measuring different aspects of clustering quality is proposed, including some indexes from the literature. Users can choose the indexes that are relevant in the application at hand. In order to measure the overall quality of a clustering (for comparing clusterings from different methods and/or different numbers of clusters), the index values are calibrated for aggregation. Calibration is relative to a set of random clusterings on the same data. Two specific aggregated indexes are proposed and compared with existing indexes on simulated and real data.

Keywords: clustering validity; numbers clusters; comparing clusterings; clusterings numbers; validity indexes

Journal Title: Statistics and Computing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.