LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular dynamics simulation studies of the ε-CL-20/HMX co-crystal-based PBXs with HTPB

Photo from archive.org

Molecular dynamics simulations were carried out to explore a ε-CL-20/HMX (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexazaisowurtzitane/1,3,5,7-tetranitro-1,3,5,7- tetrazacyclooctane) co-crystal-based polymer-bonded explosive (PBX) with HTPB (hydroxyl-terminated polybutadiene). The binding energies, pair correlation functions, and mechanical properties of… Click to show full abstract

Molecular dynamics simulations were carried out to explore a ε-CL-20/HMX (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexazaisowurtzitane/1,3,5,7-tetranitro-1,3,5,7- tetrazacyclooctane) co-crystal-based polymer-bonded explosive (PBX) with HTPB (hydroxyl-terminated polybutadiene). The binding energies, pair correlation functions, and mechanical properties of the PBXs were reported. From the calculated binding energy, it was found that the order of the binding energies per unit surface between the crystalline surface and HTPB is (0 1 0) > (1 0 0) > (0 0 1). The pair correlation function revealed that the H···O and H···N H-bonds exist on the interfaces between the crystalline surfaces and HTPB, and the number of H∙∙∙O hydrogen bonds (H-bonds) atom pairs is ten times more than that of H∙∙∙N H-bonds. Additionally, the calculated mechanical data indicated that the stiffness of the co-crystal/HTPB PBX is weaker and its ductility is better than those of the co-crystal.

Keywords: simulation studies; molecular dynamics; dynamics simulation; htpb; crystal based

Journal Title: Structural Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.