LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A comparative DFT study about surface reactivity and catalytic activity of Pd- and Ni-doped BN nanosheets: NO reduction by CO molecule

Photo from wikipedia

Today, the emission of poisonous gases in the atmosphere has caused many serious health and environmental problems. So, the finding of efficient methods for reducing or removing these toxic gases… Click to show full abstract

Today, the emission of poisonous gases in the atmosphere has caused many serious health and environmental problems. So, the finding of efficient methods for reducing or removing these toxic gases from the atmosphere is of great interest. The main goal of this study is to compare catalytic activity of Pd- and Ni-doped boron nitrite nanosheets (Pd-/Ni-BNNS) for the reduction of nitric oxide (NO) by CO molecule. To this aim, density functional theory (DFT) calculations are performed to calculate adsorption energies, geometric parameters, charge-transfer values, and reaction barriers. The results of DFT calculations show that the reduction of NO proceeds through a dimer mechanism. At first, two NO molecules are attached together to form (NO)2 dimer. Next, (NO)2 is decomposed into N2O and Oads species. The Oads is then removed by CO molecule: CO + Oads → CO2. All other possible reactions over these surfaces are studied in details. Our findings demonstrate that the catalytic activity of Pd-BNNS for the reduction of NO is higher than that of Ni-BNNS.

Keywords: reduction; molecule; activity doped; study; catalytic activity

Journal Title: Structural Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.