We consider the problem of minimization for a function with Lipschitz continuous gradient on a proximally smooth and smooth manifold in a finite dimensional Euclidean space. We consider the Lezanski-Polyak-Lojasiewicz… Click to show full abstract
We consider the problem of minimization for a function with Lipschitz continuous gradient on a proximally smooth and smooth manifold in a finite dimensional Euclidean space. We consider the Lezanski-Polyak-Lojasiewicz (LPL) conditions in this problem of constrained optimization. We prove that the gradient projection algorithm for the problem converges with a linear rate when the LPL condition holds.
               
Click one of the above tabs to view related content.