Motivated by applications to stochastic programming, we introduce and study the {\em expected-integral functionals} in the form \begin{align*} \mathbb{R}^n\times \operatorname{L}^1(T,\mathbb{R}^m)\ni(x,y)\to\operatorname{E}_\varphi(x,y):=\int_T\varphi_t(x,y(t))d\mu \end{align*} defined for extended-real-valued normal integrand functions $\varphi:T\times\mathbb{R}^n\times\mathbb{R}^m\to[-\infty,\infty]$ on complete… Click to show full abstract
Motivated by applications to stochastic programming, we introduce and study the {\em expected-integral functionals} in the form \begin{align*} \mathbb{R}^n\times \operatorname{L}^1(T,\mathbb{R}^m)\ni(x,y)\to\operatorname{E}_\varphi(x,y):=\int_T\varphi_t(x,y(t))d\mu \end{align*} defined for extended-real-valued normal integrand functions $\varphi:T\times\mathbb{R}^n\times\mathbb{R}^m\to[-\infty,\infty]$ on complete finite measure spaces $(T,\mathcal{A},\mu)$. The main goal of this paper is to establish sequential versions of Leibniz's rule for regular subgradients by employing and developing appropriate tools of variational analysis.
               
Click one of the above tabs to view related content.