LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Affective experience in the predictive mind: a review and new integrative account

Photo by markusspiske from unsplash

This paper aims to offer an account of affective experiences within Predictive Processing, a novel framework that considers the brain to be a dynamical, hierarchical, Bayesian hypothesis-testing mechanism. We begin… Click to show full abstract

This paper aims to offer an account of affective experiences within Predictive Processing, a novel framework that considers the brain to be a dynamical, hierarchical, Bayesian hypothesis-testing mechanism. We begin by outlining a set of common features of affective experiences (or feelings) that a PP-theory should aim to explain: feelings are conscious, they have valence, they motivate behaviour, and they are intentional states with particular and formal objects. We then review existing theories of affective experiences within Predictive Processing and delineate two families of theories: Interoceptive Inference Theories (which state that feelings are determined by interoceptive predictions) and Error Dynamics Theories (which state that feelings are determined by properties of error dynamics). We highlight the strengths and shortcomings of each family of theories and develop a synthesis: the Affective Inference Theory. Affective Inference Theory claims that valence corresponds to the expected rate of prediction error reduction. In turn, the particular object of a feeling is the object predicted to be the most likely cause of expected changes in prediction error rate, and the formal object of a feeling is a predictive model of the expected changes in prediction error rate caused by a given particular object. Finally, our theory shows how affective experiences bias action selection, directing the organism towards allostasis and towards optimal levels of uncertainty in order to minimise prediction error over time.

Keywords: prediction error; affective experiences; account affective; object

Journal Title: Synthese
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.