LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Radio resource management for LTE-A relay-enhanced cells with spatial reuse and max–min fairness

Photo by quackymcduck from unsplash

One of the major issues in LTE-Advanced (LTE-A) systems is the poor capacity at the cell edge. This is mainly due to the interference experienced by the users as a… Click to show full abstract

One of the major issues in LTE-Advanced (LTE-A) systems is the poor capacity at the cell edge. This is mainly due to the interference experienced by the users as a result of the aggressive frequency reuse usually implemented. Relaying offers an attractive solution for this problem by offering better links than those with the eNodeB (eNB) for the terminals suffering from high path loss or high interference. However, adding relays complicates the resource allocation problem at the eNB and therefore the need for more efficient schemes arises. This is also aggravated by the reuse of resource blocks (RBs) by the relays to fully exploit the scarce spectrum, which, in turn, leads to intra-cell interference. In this paper, we study the joint power and resource allocation problem in LTE-A relay-enhanced cells that exploit spatial reuse. To guarantee fairness among users, a max–min fair optimization objective is used. This complex problem is solved using coordinate ascent and the difference of two convex functions (DC) programming techniques and the proposed scheme indeed converges to a local-optimum quickly. This is shown to be a satisfactory solution according to the simulation results that indicate an almost sevenfold increase in the 10th percentile capacity when compared to previously proposed solutions.

Keywords: spatial reuse; reuse; max min; enhanced cells; relay enhanced; lte relay

Journal Title: Telecommunication Systems
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.