LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The use of natural language processing on pediatric diagnostic radiology reports in the electronic health record to identify deep venous thrombosis in children

Photo by owenbeard from unsplash

Venous thromboembolism (VTE) is a potentially life-threatening condition that includes both deep vein thrombosis (DVT) and pulmonary embolism. We sought to improve detection and reporting of children with a new… Click to show full abstract

Venous thromboembolism (VTE) is a potentially life-threatening condition that includes both deep vein thrombosis (DVT) and pulmonary embolism. We sought to improve detection and reporting of children with a new diagnosis of VTE by applying natural language processing (NLP) tools to radiologists’ reports. We validated an NLP tool, Reveal NLP (Health Fidelity Inc, San Mateo, CA) and inference rules engine’s performance in identifying reports with deep venous thrombosis using a curated set of ultrasound reports. We then configured the NLP tool to scan all available radiology reports on a daily basis for studies that met criteria for VTE between July 1, 2015, and March 31, 2016. The NLP tool and inference rules engine correctly identified 140 out of 144 reports with positive DVT findings and 98 out of 106 negative reports in the validation set. The tool’s sensitivity was 97.2% (95% CI 93–99.2%), specificity was 92.5% (95% CI 85.7–96.7%). Subsequently, the NLP tool and inference rules engine processed 6373 radiology reports from 3371 hospital encounters. The NLP tool and inference rules engine identified 178 positive reports and 3193 negative reports with a sensitivity of 82.9% (95% CI 74.8–89.2) and specificity of 97.5% (95% CI 96.9–98). The system functions well as a safety net to screen patients for HA-VTE on a daily basis and offers value as an automated, redundant system. To our knowledge, this is the first pediatric study to apply NLP technology in a prospective manner for HA-VTE identification.

Keywords: nlp tool; natural language; radiology; language processing; thrombosis; radiology reports

Journal Title: Journal of Thrombosis and Thrombolysis
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.