LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective Diffusivity of Porous Materials with Microcracks: Self-Similar Mean-Field Homogenization and Pixel Finite Element Simulations

Photo from wikipedia

We investigate the influence of distributed microcracks on the overall diffusion properties of a porous material using the self-similar cascade continuum micromechanics model within the framework of mean-field homogenization and… Click to show full abstract

We investigate the influence of distributed microcracks on the overall diffusion properties of a porous material using the self-similar cascade continuum micromechanics model within the framework of mean-field homogenization and computational homogenization of diffusion simulations using a high-resolution pixel finite element method. In addition to isotropic, also anisotropic crack distributions are considered. The comparison of the results from the cascade continuum micromechanics model and the numerical simulations provides a deeper insight into the qualitative transport characteristics such as the influence of the crack density on the complexity and connectivity of crack networks. The analysis shows that the effective diffusivity for a disordered microcrack distribution is independent of the absolute length scale of the cracks. It is observed that the overall effective diffusivity of a microcracked material with the microcracks oriented in the direction of transport is not necessarily higher than that of a material with a random orientation of microcracks, independent of the microcrack density.

Keywords: self similar; field homogenization; effective diffusivity; mean field; homogenization

Journal Title: Transport in Porous Media
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.